


ease of presentation. Each user logs QoS experiences with
servers after each transaction. Upon a query from the
central server, a user returns the QoS experiences (if any)
with the queried server. In addition, a user may inquire the
central server about the reputation of a candidate server
before transacting with him.

The operations of our reputation system can be best
illustrated by the following example in grid computing.
Suppose that Alice desires some computation services from
Bob, and that a higher QoS is associated with a greater
monetary cost and vice versa. Since Alice is asked to prepay
the service, she wishes to assess the reputation of Bob before
transacting with him. She achieves this by making a query
to the central server. Upon the query by Alice, the central
server collects feedbacks on Bob from some other users,
based on which to derive a reputation score for Bob which,
in turn, is returned to Alice. In addition, the central server
credits the accounts of the users offering honest feedbacks
and debits Alice’s account accordingly. Then Alice can
assess Bob’s reliability based on the reputation score and
decide whether to transact with him.

Realizing the above procedure requires solutions to the
following questions: First, how does the central server
maintain user account information to ensure secure opera-
tions of the reputation system? Second, how do system
users record their QoS experiences to enable fine-grained
QoS differentiation? Third, how does a system user check
with the central server about the reputation of a candidate
server and determine his reliability? Fourth, how does the
central server search feedbacks on queried servers and
differentiate between honest and dishonest feedbacks? Last,
how does the central server urge honest participation in the
reputation system? In the following, we will answer the
above questions one by one.

3.2 User Account Maintenance

Similarly to Gmail, 5 our reputation system adopts an
invitation-based registration policy to reduce the amount
of abuse, so misbehaving users cannot register near-infinite
number of accounts as with a completely open registration
policy. In particular, the central server only registers users

with an invitation code which is received, for example, from
an existing account holder or through their mobile phone.

We assume that the central server maintains a suffi-
ciently long master key K which it keeps confidential. The
central server assigns a unique identifier ID� to each
registered user �. Let HMACkðmÞ denote a keyed-hash
message authentication code (HMAC) [10] of message m
using a symmetric key k. The central server also sends a
shared key k� ¼ HMACKðID�Þ to user � through the
Transport Layer Security (TLS) protocol [11]. The central
server need not store all the individual shared keys to save
its storage. Instead, it can derive any shared key using K on
the fly as needed. Since HMACkðmÞ is computationally
efficient, the computational overhead is negligible. Here-
after, when saying that a message is securely sent or
transmitted between two entities, we mean that the message
is encrypted and authenticated with efficient symmetric-
key algorithms based on their shared key. For example, a
secure messagem from user � to the central server is of
format hfmgk� ;HMACk�ðmÞi, where fmgk denotes the
encryption of message m using a symmetric key k. Upon
receipt of it, the central server derives k� and then uses it to
decrypt fmgk� and compute an HMAC on m. If the HMAC
matches the received one, the central server is assured that
m indeed came from user �.

In addition to user accounts, the central server main-
tains a social network for system users, of which a
snapshot is shown in Fig. 2. Let G ¼ fGig1

i¼1 be the set of
network social groups the central server maintains. In our
system, each user is affiliated with at least one social group
Gi 2 G, where the cardinality of Gi is jGij � 1. That is, each
user at least belongs to a social group containing only
himself. A joint request for group Gi needs the consensus
of �ð0 � � � 1Þ fraction of existing group members, where
� is a system parameter chosen by the central server. For
example, supposing that user � requests to join group Gi,
the central server performs the following operations:

1. Randomly select d�jGije existing members of
group Gi.

2. Poll each chosen user� about user �’s join request.
3. Verify the response HMACk� ðID�; IDGi

Þ from each
chosen user � to make sure that the response was
indeed sent by �, where IDGi

indicates the unique
ID of Gi.

4. Link user � to group Gi if all the responses are
authentic.

1136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

5. Gmail is a free Web mail and POP e-mail service provided by Google,
Inc.

Fig. 2. A snapshot of the social network of system users with four social

groups and five users, where the directed link indicates group affiliation.

Fig. 1. The reputation system architecture.



Note that similar operations can be performed to expel a
faulty group member. For example, the central server need
receive d� jGije (or another predetermined number) authen-
ticated requests from members of Gi to remove �. We will
show the use of the social network in solving the cold-start
problem in Section 4.1.

3.3 Fine-Grained QoS Experience Vectors

In this section, we introduce an important data structure,
called a QoS experience vector (Q-vector for short), to record
users’ QoS experiences. For ease of presentation, we take
client � and server s with regard to application C as an
example hereafter.

Our system adopts a fine-grained QoS differentiation
method in contrast to the binary one used in [3], [4], [5],
[6]. Assume that the QoS of C is divided into publicly
known $ � 2 levels and that any client can unambiguously
map the QoS he experienced into one of the$ levels after
each transaction. We denote byEC

�;s ¼ ðIDs; C; e1
�;s; � � � ; e$�;sÞ

the Q-vector of client � for server s with respect to
application C. Eachei�;sð1 � i � $Þ is a counter correspond-
ing to the ith QoS level and initialized to zero. After each
transaction with s, user � maps his QoS experience into one
of the $ levels and then increases the corresponding
counter by one. Note that each user only needs to maintain
a Q-vector for who has ever offered services to him.

Old service experiences may not always be relevant for
determining the current reliability of servers that may vary
their behaviors or service qualities over time. To deal with
this situation, we introduce a discount factor � between
[0, 1.0] to assign more weight to recency. At regular
intervals, user � should update fei�;sg

$
i¼1 to f�ei�;sg

$
i¼1, so

the counter values may not be integers. If the counter values
are too small to be meaningful, e.g., all much smaller than 1,
user � can delete EC

�;s to save memory space. Discounting
the past not only can help identify servers who offer good
services initially and bad services afterwards, but also can
permit a disreputable server to reform by starting to
provide high-quality services. Following the same process,
each user needs to periodically discount all the Q-vectors he
maintains. Note that each user has the right incentive to
properly discount his QoS-vectors that provide important
inputs to his reliability decision-making process.

The discount factor � and interval are system parameters
determined by the central server to control how fast past
experiences are forgotten. Obviously, the smaller �, the
shorter the discount interval, the more quickly past
experiences fall into oblivion, and vice versa. We will
further show the effects of these two parameters using
simulations in Section 5.4.

3.4 Deriving Reputation Scores from
Self-Experiences

Now, we discuss how user � derives a reputation score for
server s based on his own QoS experiences with s, i.e.,EC

�;s.
Let ps;i denote the probability of s providing the ith QoS
level of application C. Whenever updating EC

�;s other than
using the discounting method, user � generates a reputa-
tion score RC

�;s ¼ ðID�; IDs; C; r1
�;s; � � � ; r$�;sÞ, where

ri�;s ¼
ei�;s þ 1P$

i¼1 ei�;s þ 1
� �

is the posterior mean of ps;i computed according to (4). RC
�;s

is one of the factors affecting the decision of � on s’s
reliability, as shown in Section 3.7.

3.5 Storage of Reputation Scores

In our reputation system, RC
�;s also serves as�’s feedback

on s regarding application C. The next question is how to
store such reputation scores to enable efficient queries by
the central server. We are aware of the following four
approaches.

3.5.1 Approach 1

In the first approach, whenever deriving a new reputation
score, a user securely sends it to the central server which
saves all the received reputation scores for later use. This
method, though simple, would cause significant storage
overhead on the central server, as our reputation system
may involve numerous P2P applications and users and thus
contain thousands of millions of reputation scores. As a
result, we discard this method in our design.

3.5.2 Approach 2

In this approach, each user independently stores his
reputation scores. Upon receiving a query from the central
server, he responds with the reputation score (if any) for the
queried server. This approach can significantly reduce the
storage overhead of the central server and the communica-
tion overhead of dynamically submitting reputation scores.
The drawback, however, lies in the low query efficiency.
The reason is that the central server has no knowledge
about which users have the desired reputation scores, so it
may need to send a number of queries. We will dwell on
this point in Section 3.5.

3.5.3 Approach 3

The third approach is a novel combination of the first
approach with a distributed hash table (DHT) [8]. In
particular, the central server assigns to each user� a virtual
ID, gID� ¼ dhðID�Þe�, where h indicates a fast hash
function such as SHA-1 [12] and dme� denotes the first
� bits of value m. Hereafter, we may also refer to user � as
ID� or gID� . When a user submits a reputation score, the
central server dispatches the score to several users before
discarding it. The purpose is to harness the storage
capacity of all users to provide distributed storage of
reputation scores. Consider, for example, user � who
derived a new reputation score RC

�;s. He securely transmits
it to the central server which, in turn, forwards RC

�;s to
selected users by the following process.

The central server first calculates � values of � bits called
score IDs, fdhðIDs; C; iÞe�g�i¼1, where � � 1 is a system
parameter called the redundancy index. Let n be an integer
between 0 and 2� � 1 and successorðnÞ be the first virtual
user ID clockwise from n, if virtual user IDs and score IDs
are represented as a circle of numbers of 0 to2� � 1. Then,
the central server securely transmits hIDs; C; fRC

�;sgKi in-
dividually to users fsuccessorðdhðIDs; C; iÞe�Þg�i¼1. The en-
cryption of RC

�;s is to ensure that only the central server can

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1137



decrypt and know the content of RC
�;s.

6 Upon receiving
hIDs; C; fRC

�;sgKi, the chosen users save it for later queries
by the central server. In addition, a timer needs to be set for
hIDs; C; fRC

�;sgKi, which is deleted after the timer expires.
Why does the central server let � users store hIDs; C;
fRC

�;sgKi? This is to improve system fault tolerance in case
some users cannot respond to its query for various
reasons, such as going offline. The choice of� represents
a trade-off between fault tolerance and system overhead:
the larger �, the higher fault tolerance, and the larger the
communication overhead and the average storage cost of
users, and vice versa.

Our system can well handle dynamic user sign-up or
sign-off requests. For instance, when user � signs up for
the reputation system, the successor of some score IDs
allocated to user successorð gID� Þ may become gID� . The
central server then redistributes such reputation scores
from user successorð gID� Þ to user �. When user � signs off
from the reputation system, all the reputation scores he
stores are reallocated to user successorð gID� Þ. No other
actions need be taken in the presence of user sign-ups or
sign-offs.

Another design issue is how to balance the load across
system users. Since the distribution of user virtual IDs and
reputation score IDs is unlikely to be uniform in practice,
some users may store many more reputation scores than
others, leading to load imbalance. A previous solution is to
let each user have multiple virtual IDs [8], [13] to ensure a
more uniform coverage of the range ½0; 2� � 1�. In our
system, this means that each user need store all the
reputation scores with successor IDs equal to one of his
virtual IDs. This technique, however, can only help balance
the distribution of reputation score IDs on system users,
and cannot address another reason for load imbalance
which is unique to our reputation system. Note that score
IDs are generated based on server IDs and application
indexes. It is very possible that some servers are highly
popular and serve many more users than others. As a
result, there will be many more reputation scores associated
with their score IDs and two users may have distinct
storage and communication costs even when they are
assigned the same number of score IDs.

We further alleviate the load imbalance by introducing
a popularity index technique. In particular, for each applica-
tion C, the central server maintains a popularity index
containing the top � users for which the maximum reputation
scores are submitted during the last time period  . Upon
receiving a reputation score for any indexed user s, the central
server picks a random x 2 ½1; 	� and sends the encrypted
reputation score to users fsuccessorðdhðIDskckikxÞe�Þg�i¼1 as
before. Therefore, the storage of the reputation scores for any
indexed user is uniformly distributed to 	� instead of �users.
The choice of 	, called the popularity branching factor,
determines a trade-off between load balance and system
overhead. It is also possible to use different values of 	

according to a user’s rank in the popularity index. A
popularity index may change after each time period  , in
which case the central server need redistribute reputation
scores accordingly.

As compared to Approach 2, this approach can ensure
deterministic queries by the central server because it knows
exactly who store the desired reputation scores. This is
achieved at the cost of increased communication overhead
incurred by dynamic distributions of reputation scores.

3.5.4 Approach 4

In Approach 3, the central server is involved in distributing
reputation scores among users. We can reduce the load of
the central server by letting a user directly send a reputation
score to corresponding other users instead of via the central
server. For this purpose, a distributed routing protocol is
required to enable a user to locate other users who should
store his reputation score. This can be achieved by Chord
[8] or any other distributed P2P lookup protocol. Note that
each user needs to periodically download the popularity
index for the desired application from the central server
with the purpose of correctly achieving load balance.

An important problem Chord does not address is the
secure communication between two users, as otherwise
an attacker may easily impersonate authentic system users
to disseminate or even harmful useless information. To
address this issue, we require the central server to assign an
ID-based key IK� ¼ KHðID�Þ to each user � upon
registration, where HðxÞ indicates a hash function mapping
an input x to an element of a cyclic group GG1 defined in the
Appendix. Assume that user � computes a new reputation
scoreRC

�;s to be sent to user� selected by the same method
in Approach 3. He derives a shared key k�;� by computing
k�;� ¼ êðIK�;HðID�ÞÞ, get �’s IP address through Chord,
and sends hM;HMACk�;� ðMÞi to �, where ê is the bilinear
pairing function defined in the Appendix and M :¼
hID�; IDs; C; fRC

�;sgk�i. The purpose of fRC
�;sgk� is to ensure

the privacy of user � (see Section 4.4) because only the
central server can decrypt it using k�.

Upon receiving the message, user � generates k�;� ¼
êðIK�;HðID�ÞÞ, which is equal to k�;�. The reason is that
k�;� ¼ k�;� because

êðIK�;HðID�ÞÞ ¼ êðHðID�Þ; HðID�ÞÞK

¼ êðHðID�Þ; HðID�ÞÞK

¼ êðKHðID�Þ; HðID�ÞÞ
¼ êðIK�;HðID�ÞÞ:

ð5Þ

The first-line and third-line equations are due to the
bilinearity of ê, and the second-line equation is because of
its symmetry. Then, user � calculates HMACk�;�ðMÞ and
compares it with HMACk�;� ðMÞ. If they are equal, � is
assured that the reputation score indeed came from �, who
is also a legitimate user of the reputation system. Note that
an attacker may impersonate user �, but he would not have
been in possession of IK�, thus being unable to derive a
correct k�;�.

In contrast to Approach 3, this approach can greatly
reduce the load of the central server. The cost is that each
user has to be involved in the Chord operations, which can

1138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

6. Note that the informative structure of RC
�;s means that RC

�;s is self-
authenticated, as any modification on fRC

�;sgK will render a meaningless
decryption result.



be greatly amortized if our reputation system is integrated
with any P2P application (e.g., file sharing) built upon
Chord.

3.6 Query for Reputation Scores

Assume that user � cannot predict the reliability of server s
based on his own QoS experiences with s. He securely
transmits a reputation query containing hIDs; C; nri to the
central server, where nr is the number of desired references
to s. Upon receipt of the query, the central server performs
the following different operations, depending on how
reputation scores are stored.

3.6.1 Case 1

Consider first the case that the each user independently
stores his reputation scores (Approach 2). The central server
securely sends a query hIDs; Ci to each randomly chosen
user �. If user � has RC

�;s, he securely sends it back to the
central server. Let ps be the probability of each user having
a reputation score for s, and let X be a random variable
denoting the number of users the central server needs to
inquire until obtaining nr reputation scores. Then, we have

PrðX ¼ xÞ ¼ x� 1
nr � 1

� �
pnrs ð1 � psÞx�nr ;

and E½X� ¼ nr
ps

and Var½X� ¼ nrð1�psÞ
p2
s

. The inquiry overhead
is in inverse proportion to the popularity of servers. For
example, if ps ¼ 0:005 or 0:025 and nr ¼ 20, the central
server has to on the average inquire 4,000 and 800 users,
respectively, until obtaining 20 reputation scores.

3.6.2 Case 2

Now, we consider the case in which reputation scores are
stored through the DHT (i.e., Approaches 3 and 4). For ease of
presentation, below we assume that s is not on the popularity
index of application C, but the extension to any indexed server
is straightforward. Let user gID� be a random online one
among users fsuccessorðdhðIDskCkiÞe�Þg�i¼1. The central
server securely sends a query hIDs; C; nri to user �. Upon
receipt of the query, if user � stores fewer than nr encrypted
reputation scores, he sends all of them to the central server;
otherwise, he sends randomly selected nr of them. After
receiving the encrypted reputation scores, the central server
decrypts them using either the master key K (Approach 3)
or the individual shared keys (Approach 4). One may
consider reducing the load on the central server by letting
user � directly send reputation queries for s to other users.
This is impossible in our system because all the reputation
scores have been encrypted and can only be accessible to
the central server for protecting references’ privacy.

In both cases, let � be the set of reputation scores for s
returned to the central server, where j�j � nr. The central
server cannot simply aggregate these reputation scores
because there might beoutliers in � which are very different
from the rest based on some measure. These outliers might
have been created by users who attempt to defame or flatter
user s, so it is necessary to identify and remove them from
�. Assuming that nonoutliers are the majority in �, we can
apply any existing multivariate outlier detection technique to

find outliers in �. Below we describe a distance-based
method [14] for its simplicity and efficiency. In particular,
we calculate the sum of the euclidean distances of each
reputation score in � from all the others. A reputation score is
said to be an outlier if there are no more than 
 � 1 other distance
sums larger than its distance sum. Here, 
 is called an outlier
index between 1; bnr2 c

� �
decided by the central server. There

is also a trade-off regarding the choice of 
: if 
 is large,
more outliers will be removed but more nonoutliers may be
mislabeled as outliers; and vice versa. Let �0 be the set of
reputation scores from which 
 outliers have been elimi-
nated. The central server generates a reputation score
RC
s ¼ fIDs; C; r1

s; � � � ; r$s g, where

ris ¼
P

x2�0 rix;s
j�0j :

Finally, the central server securely sendsRs to the requesting
user �. If no reputation scores for s are found, the central
server also need inform � about it.

3.7 Reliability Assessment

Assume that user � has computed RC
�;s and obtained RC

s

from the central server and that his lowest and highest
tolerable QoS levels are #L� and #H� , both in ½1; $�. He
computes a reliability indicator as

IC
�;s ¼ ð1 � ��Þ

X#H�
i¼#L�

ri�;s þ ��
X#H�
i¼#L�

ris: ð6Þ

Here, "� 2 ½0; 1:0� is called a trust indicator chosen by user� to
reflect the level of his trust on others’ QoS experiences with s.
User � considers s reliable if I�;s � ’� and unreliable
otherwise, where ’a 2 ½0; 1:0� is a threshold chosen by
� itself. In the former case, � starts to transact with s.
Otherwise, he starts to check another candidate server, if any.

It is obvious that our fine-grained QoS differentiation
method enables independent reliability decision-making of
individual nodes with diverse QoS requirements. Consider
grid computing [1] as an example whose QoS is defined as
the time t (in seconds) taken to finish a unit computation
task. Assume that if the binary QoS differentiation method
[3], [4], [5], [6] is used, the QoS is classified asgood for t < 60
and bad otherwise, namely, $ ¼ 2. In contrast, in our
reputation system, the QoS is classified as six levels
ð$ ¼ 6Þ : t � 60, 48 � t < 60, 36 � t < 48, 24 � t < 36,
12 � t < 24, and t < 12. Suppose that the QoS requirements
of users �1 and �2 are t < 60 and t < 36, respectively.
Obviously, the binary method cannot enable �2 to correctly
assess the reliability of a candidate server, while our
method can do so.

3.8 Stimulating Participation With Credits

Another issue left for discussion is how to motivate users to
respond to reputation queries and participate in storing
reputation scores if the DHT is used. This is important
because users in the open system have individual interests
and are generally reluctant to serve others for free [15]. We
address this issue by a credit-based approach. In particular,
upon the registration of any user �, the central server opens
a credit account for him with zero balance. Below, we

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1139



specifically, the average and maximum SCR differences are
23.14 percent and 42 percent, respectively, and the variance
is 0.29 percent.

To sum up, the above results clearly demonstrate the
benefits of our fine-grained QoS differentiation method in
meeting the various QoS needs of clients.

5.3 Filtering Outlier Reputation Scores

In the last section, each client is assumed to always offer
honest reputation scores. This subsection studies the
efficacy of distance-based multivariate outlier detection in
eliminating dishonest reputation scores (or outliers). For
lack of space, we focus on filtering defaming outliers, but it
should be noted that our approach performs equally well in
detecting flattering outliers. In the simulation, an outlier is
generated as a set of six random numbers normalized by
their sum, which follow the multinomial distribution {0, 0.5,
0.3, 0.1, 0.05, 0.05}. Similarly, a nonoutlier is generated with
the multinomial distribution {0, 0.05, 0.05, 0.1, 0.3, 0.5}. We
also assume that the central server aggregates the reputa-
tion scores for s1 from all the 100 clients and then
determines the reliability of s1 in offering a QoS level
higher than l3. In addition to s1’s reliability indicator
(denoted by Is1

), we have interest in the false positive rate,
defined as the proportion of nonoutliers that were
mislabeled as outliers, and the false negative rate, defined
as the proportion of outliers that were not detected.

We can see from Fig. 5 that, without outlier detection, Is1

decreases dramatically with the increase of outliers, which
is no surprise. In addition, the outlier detection technique
can greatly alleviate the impact of outliers and make Is1

approach its true value, 0.9. The larger the outlier index 
,
the higher the efficacy of ou tlier detection. Another
observation is that outlier detection fails when the percen-
tage of outliers reaches 50 percent, in which case there is no
longer clear distinction between outliers and nonoutliers.
We believe that this issue cannot be easily solved by any
technical means. This scenario also reflects an underlying
assumption of all practical reputation systems: Outliers are
assumed to be always the minority.

Figs. 6 and 7 depict the false positive and negative rates
with varying outlier indexes, respectively. As we can see,
when the number of outliers is fixed, a larger outlier index 

can result in a higher false positive rate but a lower false
negative rate, and vice versa. We opt for a larger 
 because
it may lead to more trustable reliability decisions, though it
may cause some nonoutliers to be unable to get deserved
credits. In practice, the central server can decide 
 and
dynamically adjust it by empirical means. Further investi-
gation on how to choose 
 is part of our future work.

5.4 Effects of Discounting the Past

In this section, we evaluate the impact of the aforementioned
discount method on the reliability decision-making process.
For this purpose, we assume that each client always selectss1

1142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 4. Comparing service contentment ratios.

Fig. 5. The reliability indicator for s1 offering a QoS level higher than l3.

Fig. 6. The false positive rate.

Fig. 7. The false negative rate.



as the server and evaluates its reliability in offering a QoS
level higher than l3 based on his own QoS experiences in past
sessions. We also assume that the behavior profile ofs1 is {0,
0.5, 0.3, 0.1, 0.05, 0.05} for the first 100 sessions and changes to
{0, 0.05, 0.05, 0.1, 0.3, 0.5} afterward.

Fig. 8 shows the average reputation indicators for s1 with
varying discount factors across sessions, where the discount
interval � is fixed to be one session. It is obvious that a
smaller discount factor, say � ¼ 0:25, can help catch the QoS
variations of s1 more quickly at the cost of generating
reputation indicators far from the true value. In particular,
when � ¼ 0, each client discards all his past QoS experi-
ences and derives a reliability indicator 0.6 for s1. On the
contrary, a larger � can lead to a more trustful reputation
indicator at the cost of accommodating the QoS variations
of s1 more slowly.

Fig. 9 depicts the impact of � , in which � is fixed to be
0.75. Since a larger discount interval is equivalent to a larger
discount factor, we can observe the similar trend as in Fig. 8.

5.5 Load Balance with the Popularity Index

Here, we show how the popularity index technique (see
Section 3.5) can help achieve load balance when the DHT is
used to store reputation scores. We assume that there are
100 clients and 100 reputation score IDs, and that the
redundancy index � is 1. The popularity index contains

10 reputation score IDs whose numbers of associated
reputation scores are uniformly distributed between
[80, 99]. For the rest of reputation score IDs, the numbers of
associated reputation scores are uniformly distributed be-
tween [10, 30]. Since the usefulness of multiple virtual IDs in
improving load balance has been validated in [8], we assume
that each client has one virtual ID to simplify the simulation.

Fig. 10 shows the standard deviation (STD) of the number
of reputation scores per node, where each point represents
the average of 150 runs. As we can see, the popularity index
can obviously result in a more balanced usage of client
resources: the greater the popularity branching factor 	, the
higher the level of load balance we can achieve.

6 RELATED WORK

Recent years have witnessed a growing interest in reputa-
tion systems research. Due to space constraints, we only
discuss prior art that is more germane to our work and refer
to [2] for a comprehensive survey.

Previous proposals [3], [4], [5], [6] use single-variate
Bayesian inference [7] to build reputation engines and thus
are all special cases of our Dirichlet reputation engine. Built
upon multivariate Bayesian inference, our system can satisfy
the diverse QoS needs of individual nodes. Our work also
differs significantly from [3], [4], [5], [6] by stimulating honest
participation in the reputation system by credits and social
awareness. In [19], Whitby et al. propose an iterative method
for filtering dishonest feedbacks, but their scheme is only
applicable to the single-variate Beta reputation systems [3],
[4], [5], [6]. Fernandes et al. [20] propose rewarding users for
active and honest participation in the reputation system but
do not consider fine-grained QoS differentiation or most of
the issues presented in Section 4. Furthermore, the issue of
service differentiation in P2P networks is addressed in [21],
where peer reputation scores are mapped to various levels of
service. By contrast, our scheme considers the QoS differ-
entiation issue when deriving the reputation scores via
multivariate Bayesian inference. Damiani et al. [22] present
a reputation-based approach for choosing reliable resources
in P2P file sharing applications, in which separate reputations
are associated with resources and servers who share
resources, respectively. This idea can help further alleviate
the application-related cold-start problem when our system
is applied to file-sharing-like P2P applications.

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1143

Fig. 8. Average reputation indicators for s1 with varying discount factors,

where the discount interval � is fixed to be 1 session.

Fig. 9. Average reputation indicators for s1 with varying discount

intervals, where the discount factor � is fixed to be 0.75.

Fig. 10. The standard deviation of the number of reputation scores per

node.






